Non-Specific Interactions of Rhizospheric Microbial Communities Support the Establishment of Mimosa acutistipula var. ferrea in an Amazon Rehabilitating Mineland

Author:

Costa Paulo Henrique de OliveiraORCID,Nascimento Sidney Vasconcelos doORCID,Herrera HectorORCID,Gastauer MarkusORCID,Ramos Silvio JunioORCID,Caldeira Cecílio FroisORCID,Oliveira GuilhermeORCID,Valadares Rafael Borges da SilvaORCID

Abstract

Mimosa acutistipula var. ferrea (Fabaceae) is endemic to ferruginous tropical rocky outcrops in the eastern Amazon, also known as canga. Canga are often associated with mining activities and are the target of protection and rehabilitation projects. M. acutistipula stands out in this biodiversity hotspot with high growth rates, even in rehabilitating minelands (RMs). However, little is known about the diversity of soil microorganisms interacting with M. acutistipula in canga and RMs. This study analyzed the rhizosphere-associated bacterial and fungal microbial communities associated with M. acutistipula growing in an RM and a native shrub canga. The fungal phylum Ascomycota was the dominant taxa identified in the rhizosphere of the canga (RA: 98.1) and RM (RA: 93.1). The bacterial phyla Proteobacteria (RA: 54.3) and Acidobacteria (RA: 56.2) were the dominant taxa identified in the rhizosphere in the canga and RM, respectively. Beneficial genera such as Bradyrhizobium, Rhodoplanes, and Paraconiothyrium were identified in the rhizosphere of M. acutistipula in both areas. However, the analyses showed that the fungal and bacterial diversity differed between the rhizosphere of the canga and RM, and that the microbial taxa adapted to the canga (i.e., Rasamsonia, Scytalidium, Roseiarcus, and Rhodomicrobium) were lacking in the RM. This influences the microbe-mediated soil processes, affecting long-term rehabilitation success. The results showed that M. acutistipula established non-specific interactions with soil microorganisms, including beneficial taxa such as nitrogen-fixing bacteria, mycorrhizal fungi, and other beneficial endophytes, well known for their importance in plant adaptation and survival. High levels of microbe association and a plant’s ability to recruit a wide range of soil microorganisms help to explain M. acutistipula’s success in rehabilitating minelands.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3