Author:
Acharya Tathagata,Riehl Brooke,Fuchs Alan
Abstract
The urban heat island (UHI) effect increases the ambient temperatures in cities and alters the energy budget of building materials. Urban surfaces such as pavements and roofs absorb solar heat and re-emit it back into the atmosphere, contributing towards the UHI effect. Over the past few decades, researchers have identified albedo and thermal inertia as two of the most significant thermal properties that influence pavement surface temperatures under a given solar load. However, published data for comparisons of albedo and thermal inertia are currently inadequate. This work focuses on asphalt and concrete as two important materials used in the construction of pavements. Computational fluid dynamics (CFD) analyses are performed on asphalt and concrete pavements with the same dimensions and under the same ambient conditions. Under given conditions, the pavement top surface temperature is evaluated with varying albedo and thermal inertia values. The results show that the asphalt surface temperatures are consistently higher than the concrete surface temperatures. Surface temperatures under solar load reduce with increasing albedo and thermal inertia values for both asphalt and concrete pavements. The CFD results show that increasing the albedo is more effective in reducing pavement surface temperatures than increasing the thermal inertia.
Funder
Mineta Transportation Institute
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献