Effects of Albedo and Thermal Inertia on Pavement Surface Temperatures with Convective Boundary Conditions—A CFD Study

Author:

Acharya Tathagata,Riehl Brooke,Fuchs Alan

Abstract

The urban heat island (UHI) effect increases the ambient temperatures in cities and alters the energy budget of building materials. Urban surfaces such as pavements and roofs absorb solar heat and re-emit it back into the atmosphere, contributing towards the UHI effect. Over the past few decades, researchers have identified albedo and thermal inertia as two of the most significant thermal properties that influence pavement surface temperatures under a given solar load. However, published data for comparisons of albedo and thermal inertia are currently inadequate. This work focuses on asphalt and concrete as two important materials used in the construction of pavements. Computational fluid dynamics (CFD) analyses are performed on asphalt and concrete pavements with the same dimensions and under the same ambient conditions. Under given conditions, the pavement top surface temperature is evaluated with varying albedo and thermal inertia values. The results show that the asphalt surface temperatures are consistently higher than the concrete surface temperatures. Surface temperatures under solar load reduce with increasing albedo and thermal inertia values for both asphalt and concrete pavements. The CFD results show that increasing the albedo is more effective in reducing pavement surface temperatures than increasing the thermal inertia.

Funder

Mineta Transportation Institute

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3