The Most Refined Axiom for a Digital Covering Space and Its Utilities

Author:

Han Sang-Eon

Abstract

This paper is devoted to establishing the most refined axiom for a digital covering space which remains open. The crucial step in making our approach is to simplify the notions of several types of earlier versions of local (k0,k1)-isomorphisms and use the most simplified local (k0,k1)-isomorphism. This approach is indeed a key step to make the axioms for a digital covering space very refined. In this paper, the most refined local (k0,k1)-isomorphism is proved to be a (k0,k1)-covering map, which implies that the earlier axioms for a digital covering space are significantly simplified with one axiom. This finding facilitates the calculations of digital fundamental groups of digital images using the unique lifting property and the homotopy lifting theorem. In addition, consider a simple closed k:=k(t,n)-curve with five elements in Zn, denoted by SCkn,5. After introducing the notion of digital topological imbedding, we investigate some properties of SCkn,5, where k:=k(t,n),3≤t≤n. Since SCkn,5 is the minimal and simple closed k-curve with odd elements in Zn which is not k-contractible, we strongly study some properties of it associated with generalized digital wedges from the viewpoint of fixed point theory. Finally, after introducing the notion of generalized digital wedge, we further address some issues which remain open. The present paper only deals with k-connected digital images.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Digital (k0, k1)-covering map and its properties;Han;Honam Math. J.,2004

2. Digital coverings and their applications;Han;J. Appl. Math. Comput.,2005

3. Non-product property of the digital fundamental group

4. Discrete Homotopy of a Closed k-Surface;Han,2006

5. The Classification of Digital Covering Spaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3