Author:
LONG Zhiming,HERRERA Rémy
Abstract
Adding a linear trend in regressions is a frequent detrending method in economic literatures. The traditional literatures pointed out that if the variable considered is a difference-stationary process, then it will artificially create pseudo-periodicity in the residuals. In this paper, we further show that the real problem might be more serious. As the Ordinary Least Squares (OLS) estimators themselves are of such a detrending method is spurious. The first part provides a mathematical proof with Chebyshev’s inequality and Sims–Stock–Watson’s algorithm to show that the OLS estimator of trend converges toward zero in probability, and the other OLS estimator diverges when the sample size tends to infinity. The second part designs Monte Carlo simulations with a sample size of 1,000,000 as an approximation of infinity. The seed values used are the true random numbers generated by a hardware random number generator in order to avoid the pseudo-randomness of random numbers given by software. This paper repeats the experiment 100 times, and gets consistent results with mathematical proof. The last part provides a brief discussion of detrending strategies.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference31 articles.
1. A Study in the Analysis of Stationary Time Series;Wold Herman,1954
2. Time Series Analysis: Forecasting and Control;Box,1970
3. Spurious regressions in econometrics
4. Understanding spurious regressions in econometrics
5. Estimation and Inference in Econometrics;Davidson,1993
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献