Modeling and Controlling Epidemic Outbreaks: The Role of Population Size, Model Heterogeneity and Fast Response in the Case of Measles

Author:

Yagci Sokat Kezban,Armbruster Benjamin

Abstract

Modelers typically use detailed simulation models and vary the fraction vaccinated to study outbreak control. However, there is currently no guidance for modelers on how much detail (i.e., heterogeneity) is necessary and how large a population to simulate. We provide theoretical and numerical guidance for those decisions and also analyze the benefit of a faster public health response through a stochastic simulation model in the case of measles in the United States. Theoretically, we prove that the outbreak size converges as the simulation population increases and that the outbreaks are slightly larger with a heterogeneous community structure. We find that the simulated outbreak size is not sensitive to the size of the simulated population beyond a certain size. We also observe that in case of an outbreak, a faster public health response provides benefits similar to increased vaccination. Insights from this study can inform the control and elimination measures of the ongoing coronavirus disease (COVID-19) as measles has shown to have a similar structure to COVID-19.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3