Abstract
In the era of big data, the size and complexity of the data are increasing especially for those stored in remote locations, and whose difficulty is further increased by the ongoing rapid accumulation of data scale. Real-world optimization problems present new challenges to traditional intelligent optimization algorithms since the traditional serial optimization algorithm has a high computational cost or even cannot deal with it when faced with large-scale distributed data. Responding to these challenges, a distributed cooperative evolutionary algorithm framework using Spark (SDCEA) is first proposed. The SDCEA can be applied to address the challenge due to insufficient computing resources. Second, a distributed quantum-behaved particle swarm optimization algorithm (SDQPSO) based on the SDCEA is proposed, where the opposition-based learning scheme is incorporated to initialize the population, and a parallel search is conducted on distributed spaces. Finally, the performance of the proposed SDQPSO is tested. In comparison with SPSO, SCLPSO, and SALCPSO, SDQPSO can not only improve the search efficiency but also search for a better optimum with almost the same computational cost for the large-scale distributed optimization problem. In conclusion, the proposed SDQPSO based on the SDCEA framework has high scalability, which can be applied to solve the large-scale optimization problem.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference39 articles.
1. Distributed evolutionary algorithms and their models: A survey of the state-of-the-art
2. Artificial Intelligence: Principles and Applications;Wang,2020
3. Research progress of big data analytics methods based on artificial intelligence technology;Wang;Comput. Integr. Manuf. Syst.,2019
4. MapReduce: Simplified Data Processing on Large Clusters;Dean;Commun. ACM,2008
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献