A Distributed Quantum-Behaved Particle Swarm Optimization Using Opposition-Based Learning on Spark for Large-Scale Optimization Problem

Author:

Zhang ZhaojuanORCID,Wang WanliangORCID,Pan GaofengORCID

Abstract

In the era of big data, the size and complexity of the data are increasing especially for those stored in remote locations, and whose difficulty is further increased by the ongoing rapid accumulation of data scale. Real-world optimization problems present new challenges to traditional intelligent optimization algorithms since the traditional serial optimization algorithm has a high computational cost or even cannot deal with it when faced with large-scale distributed data. Responding to these challenges, a distributed cooperative evolutionary algorithm framework using Spark (SDCEA) is first proposed. The SDCEA can be applied to address the challenge due to insufficient computing resources. Second, a distributed quantum-behaved particle swarm optimization algorithm (SDQPSO) based on the SDCEA is proposed, where the opposition-based learning scheme is incorporated to initialize the population, and a parallel search is conducted on distributed spaces. Finally, the performance of the proposed SDQPSO is tested. In comparison with SPSO, SCLPSO, and SALCPSO, SDQPSO can not only improve the search efficiency but also search for a better optimum with almost the same computational cost for the large-scale distributed optimization problem. In conclusion, the proposed SDQPSO based on the SDCEA framework has high scalability, which can be applied to solve the large-scale optimization problem.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

1. Distributed evolutionary algorithms and their models: A survey of the state-of-the-art

2. Artificial Intelligence: Principles and Applications;Wang,2020

3. Research progress of big data analytics methods based on artificial intelligence technology;Wang;Comput. Integr. Manuf. Syst.,2019

4. MapReduce: Simplified Data Processing on Large Clusters;Dean;Commun. ACM,2008

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3