Parallel Implementations of ARX-Based Block Ciphers on Graphic Processing Units

Author:

An SangWoo,Kim YoungBeomORCID,Kwon Hyeokdong,Seo HwajeongORCID,Seo Seog ChungORCID

Abstract

With the development of information and communication technology, various types of Internet of Things (IoT) devices have widely been used for convenient services. Many users with their IoT devices request various services to servers. Thus, the amount of users’ personal information that servers need to protect has dramatically increased. To quickly and safely protect users’ personal information, it is necessary to optimize the speed of the encryption process. Since it is difficult to provide the basic services of the server while encrypting a large amount of data in the existing CPU, several parallel optimization methods using Graphics Processing Units (GPUs) have been considered. In this paper, we propose several optimization techniques using GPU for efficient implementation of lightweight block cipher algorithms on the server-side. As the target algorithm, we select high security and light weight (HIGHT), Lightweight Encryption Algorithm (LEA), and revised CHAM, which are Add-Rotate-Xor (ARX)-based block ciphers, because they are used widely on IoT devices. We utilize the features of the counter (CTR) operation mode to reduce unnecessary memory copying and operations in the GPU environment. Besides, we optimize the memory usage by making full use of GPU’s on-chip memory such as registers and shared memory and implement the core function of each target algorithm with inline PTX assembly codes for maximizing the performance. With the application of our optimization methods and handcrafted PTX codes, we achieve excellent encryption throughput of 468, 2593, and 3063 Gbps for HIGHT, LEA, and revised CHAM on RTX 2070 NVIDIA GPU, respectively. In addition, we present optimized implementations of Counter Mode Based Deterministic Random Bit Generator (CTR_DRBG), which is one of the widely used deterministic random bit generators to provide a large amount of random data to the connected IoT devices. We apply several optimization techniques for maximizing the performance of CTR_DRBG, and we achieve 52.2, 24.8, and 34.2 times of performance improvement compared with CTR_DRBG implementation on CPU-side when HIGHT-64/128, LEA-128/128, and CHAM-128/128 are used as underlying block cipher algorithm of CTR_DRBG, respectively.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference16 articles.

1. HIGHT: A new block cipher suitable for low-resource device;Hong,2006

2. LEA: A 128-bit block cipher for fast encryption on common processors;Hong,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3