Abstract
High dimensional embeddings of graph data into hyperbolic space have recently been shown to have great value in encoding hierarchical structures, especially in the area of natural language processing, named entity recognition, and machine generation of ontologies. Given the striking success of these approaches, we extend the famous hyperbolic geometric random graph models of Krioukov et al. to arbitrary dimension, providing a detailed analysis of the degree distribution behavior of the model in an expanded portion of the parameter space, considering several regimes which have yet to be considered. Our analysis includes a study of the asymptotic correlations of degree in the network, revealing a non-trivial dependence on the dimension and power law exponent. These results pave the way to using hyperbolic geometric random graph models in high dimensional contexts, which may provide a new window into the internal states of network nodes, manifested only by their external interconnectivity.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference27 articles.
1. Complex Graphs and Networks;Chung,2006
2. Lectures on Complex Networks;Dorogovtsev,2010
3. Networks, An Introduction;Newman,2010
4. Statistical mechanics of complex networks
5. Emergence of Scaling in Random Networks
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献