Author:
Hussain Syed M.,Sharma Rohit,Mishra Manas R.,Alrashidy Sattam S.
Abstract
The key objective of this analysis is to examine the flow of hydromagnetic dissipative and radiative graphene Maxwell nanofluid over a linearly stretched sheet considering momentum and thermal slip conditions. The appropriate similarity variables are chosen to transform highly nonlinear partial differential equations (PDE) of mathematical model in the form of nonlinear ordinary differential equations (ODE). Further, these transformed equations are numerically solved by making use of Runge-Kutta-Fehlberg algorithm along with the shooting scheme. The significance of pertinent physical parameters on the flow of graphene Maxwell nanofluid velocity and temperature are enumerated via different graphs whereas skin friction coefficients and Nusselt numbers are illustrated in numeric data form and are reported in different tables. In addition, a statistical approach is used for multiple quadratic regression analysis on the numerical figures of wall velocity gradient and local Nusselt number to demonstrate the relationship amongst heat transfer rate and physical parameters. Our results reveal that the magnetic field, unsteadiness, inclination angle of magnetic field and porosity parameters boost the graphene Maxwell nanofluid velocity while Maxwell parameter has a reversal impact on it. Finally, we have compared our numerical results with those of earlier published articles under the restricted conditions to validate our solution. The comparison of results shows an excellent conformity among the results.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献