Terrain Slope Effect on Forest Height and Wood Volume Estimation from GEDI Data

Author:

Fayad Ibrahim,Baghdadi NicolasORCID,Alcarde Alvares ClaytonORCID,Stape Jose Luiz,Bailly Jean StéphaneORCID,Scolforo Henrique Ferraço,Cegatta Italo RamosORCID,Zribi MehrezORCID,Le Maire GuerricORCID

Abstract

The Global Ecosystem Dynamics Investigation LiDAR (GEDI) is a new full waveform (FW) based LiDAR system that presents a new opportunity for the observation of forest structures globally. The backscattered GEDI signals, as all FW systems, are distorted by topographic conditions within their footprint, leading to uncertainties on the measured forest variables. In this study, we explore how well several approaches based on waveform metrics and ancillary digital elevation model (DEM) data perform on the estimation of stand dominant heights (Hdom) and wood volume (V) across different sites of Eucalyptus plantations with varying terrain slopes. In total, five models were assessed on their ability to estimate Hdom and four models for V. Results showed that the models using the GEDI metrics, such as the height at different energy quantiles with terrain data from the shuttle radar topography mission’s (SRTM) digital elevation model (DEM) were still dependent on the topographic slope. For Hdom, an RMSE increase of 14% was observed for data acquired over slopes higher than 20% in comparison to slopes between 10 and 20%. For V, a 74% increase in RMSE was reported between GEDI data acquired over slopes between 0–10% and those acquired over slopes higher than 10%. Next, a model relying on the height at different energy quantiles of the entire waveform (HTn) and the height at different energy quartiles of the bare ground waveform (HGn) was assessed. Two sets of the HGn metrics were generated, the first one was obtained using a simulated waveform representing the echo from a bare ground, while the second one relied on the actual ground return from the waveform by means of Gaussian fitting. Results showed that both the simulated and fitted models provide the most accurate estimates of Hdom and V for all slope ranges. The simulation-based model showed an RMSE that ranged between 1.39 and 1.66 m (between 26.76 and 39.26 m3·ha−1 for V) while the fitting-based method showed an RMSE that ranged between 1.26 and 1.34 m (between 26.78 and 36.29 m3·ha−1 for V). Moreover, the dependency of the GEDI metrics on slopes was greatly reduced using the two sets of metrics. As a conclusion, the effect of slopes on the 25-m GEDI footprints is rather low as the estimation on canopy heights from uncorrected waveforms degraded by a maximum of 1 m for slopes between 20 and 45%. Concerning the wood volume estimation, the effect of slopes was more pronounced, and a degradation on the accuracy (increased RMSE) of a maximum of 20 m3·ha−1 was observed for slopes between 20 and 45%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3