Hyperspectral Unmixing Based on Constrained Bilinear or Linear-Quadratic Matrix Factorization

Author:

Benhalouche Fatima ZohraORCID,Deville YannickORCID,Karoui Moussa SofianeORCID,Ouamri Abdelaziz

Abstract

Unsupervised hyperspectral unmixing methods aim to extract endmember spectra and infer the proportion of each of these spectra in each observed pixel when considering linear mixtures. However, the interaction between sunlight and the Earth’s surface is often very complex, so that observed spectra are then composed of nonlinear mixing terms. This nonlinearity is generally bilinear or linear quadratic. In this work, unsupervised hyperspectral unmixing methods, designed for the bilinear and linear-quadratic mixing models, are proposed. These methods are based on bilinear or linear-quadratic matrix factorization with non-negativity constraints. Two types of algorithms are considered. The first ones only use the projection of the gradient, and are therefore linked to an optimal manual choice of their learning rates, which remains the limitation of these algorithms. The second developed algorithms, which overcome the above drawback, employ multiplicative projective update rules with automatically chosen learning rates. In addition, the endmember proportions estimation, with three alternative approaches, constitutes another contribution of this work. Besides, the reduction of the number of manipulated variables in the optimization processes is also an originality of the proposed methods. Experiments based on realistic synthetic hyperspectral data, generated according to the two considered nonlinear mixing models, and also on two real hyperspectral images, are carried out to evaluate the performance of the proposed approaches. The obtained results show that the best proposed approaches yield a much better performance than various tested literature methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3