Alternative Approach for Tsunami Early Warning Indicated by Gravity Wave Effects on Ionosphere

Author:

Foroodi Zahra,Alizadeh MahdiORCID,Schuh HaraldORCID,Tsai Lung-Chih

Abstract

The rapid displacement of the ocean floor during large ocean earthquakes or volcanic eruptions causes the propagation of tsunami waves on the surface of the ocean, and consequently internal gravity waves (IGWs) in the atmosphere. IGWs pierce through the troposphere and into the ionospheric layer. In addition to transferring energy to the ionosphere, they cause significant variations in ionospheric parameters, so they have considerable effects on the propagation of radio waves through this dispersive medium. In this study, double-frequency measurements of the Global Positioning System (GPS) and ionosonde data were used to determine the ionospheric disturbances and irregularities in response to the tsunami induced by the 2011 Tohoku earthquake. The critical frequency of the F2 layer (foF2) data obtained from the ionosonde data also showed clear disturbances that were consistent with the GPS observations. IGWs and tsunami waves have similar propagation properties, and IGWs were detected about 25 min faster than tsunami waves in GPS ground stations at the United States west coast, located about 7900 km away from the tsunami’s epicenter. As IGWs have a high vertical propagation velocity, and propagate obliquely into the atmosphere, IGWs can also be used for tsunami early warning. To further investigate the spatial variation in ionospheric electron density (IED), ionospheric profiles from FORMOSAT-3/COSMIC (F3/C) satellites were investigated for both reference and observation periods. During the tsunami, the reduction in IED started from 200 km and continued up to 272 km altitude. The minimum observed reduction was 2.68 × 105 el/cm3, which has happened at 222 km altitude. The IED increased up to 767 km altitude continuously, such that the maximum increase was 3.77 × 105 el/cm3 at 355 km altitude.

Funder

DFG, German Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. GNSS Remote Sensing: Theory, Methods and Applications;Shuanggen,2014

2. Geodetic and Atmospheric Background;Böhm,2013

3. Forcing of the ionosphere by waves from below

4. On the possible detection of tsunamis by a monitoring of the ionosphere

5. The Earth’s Atmosphere: Its Physics and Dynamics;Saha,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3