Computation Offloading and Resource Allocation Based on P-DQN in LEO Satellite Edge Networks

Author:

Yang Xu1,Fang Hai1ORCID,Gao Yuan1,Wang Xingjie2ORCID,Wang Kan2,Liu Zheng2

Affiliation:

1. Xi’an Institute of Space Radio Technology, Xi’an 710100, China

2. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

Traditional low earth orbit (LEO) satellite networks are typically independent of terrestrial networks, which develop relatively slowly due to the on-board capacity limitation. By integrating emerging mobile edge computing (MEC) with LEO satellite networks to form the business-oriented “end-edge-cloud” multi-level computing architecture, some computing-sensitive tasks can be offloaded by ground terminals to satellites, thereby satisfying more tasks in the network. How to make computation offloading and resource allocation decisions in LEO satellite edge networks, nevertheless, indeed poses challenges in tracking network dynamics and handling sophisticated actions. For the discrete-continuous hybrid action space and time-varying networks, this work aims to use the parameterized deep Q-network (P-DQN) for the joint computation offloading and resource allocation. First, the characteristics of time-varying channels are modeled, and then both communication and computation models under three different offloading decisions are constructed. Second, the constraints on task offloading decisions, on remaining available computing resources, and on the power control of LEO satellites as well as the cloud server are formulated, followed by the maximization problem of satisfied task number over the long run. Third, using the parameterized action Markov decision process (PAMDP) and P-DQN, the joint computing offloading, resource allocation, and power control are made in real time, to accommodate dynamics in LEO satellite edge networks and dispose of the discrete-continuous hybrid action space. Simulation results show that the proposed P-DQN method could approach the optimal control, and outperforms other reinforcement learning (RL) methods for merely either discrete or continuous action space, in terms of the long-term rate of satisfied tasks.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3