A Vehicle Recognition Algorithm Based on Deep Transfer Learning with a Multiple Feature Subspace Distribution

Author:

Wang HaiORCID,Yu Yijie,Cai Yingfeng,Chen Long,Chen Xiaobo

Abstract

Vehicle detection is a key component of environmental sensing systems for Intelligent Vehicles (IVs). The traditional shallow model and offline learning-based vehicle detection method are not able to satisfy the real-world challenges of environmental complexity and scene dynamics. Focusing on these problems, this work proposes a vehicle detection algorithm based on a multiple feature subspace distribution deep model with online transfer learning. Based on the multiple feature subspace distribution hypothesis, a deep model is established in which multiple Restricted Boltzmann Machines (RBMs) construct the lower layers and a Deep Belief Network (DBN) composes the superstructure. For this deep model, an unsupervised feature extraction method is applied, which is based on sparse constraints. Then, a transfer learning method with online sample generation is proposed based on the deep model. Finally, the entire classifier is retrained online with supervised learning. The experiment is actuated using the KITTI road image datasets. The performance of the proposed method is compared with many state-of-the-art methods and it is demonstrated that the proposed deep transfer learning-based algorithm outperformed existing state-of-the-art methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of traffic rule violation in University campus using deep learning model;International Journal of System Assurance Engineering and Management;2023-08-29

2. An Effective YOLO-Based Proactive Blind Spot Warning System for Motorcycles;Electronics;2023-08-02

3. Traffic Infraction and Alert System for Two-wheelers using Deep Learning and YOLO v3;2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS);2023-03-17

4. ShortYOLO-CSP: a decisive incremental improvement for real-time vehicle detection;Journal of Real-Time Image Processing;2023-01-27

5. Microclimate investigation of vehicular traffic on the urban heat island through IoT-Based device;Heliyon;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3