Energy Management Strategies for Hybrid Loaders: Classification, Comparison and Prospect

Author:

Liu Jichao1,Liang Yanyan1,Chen Zheng2,Chen Wenpeng1

Affiliation:

1. Jiangsu XCMG Research Institute Co., Ltd., Xuzhou 221004, China

2. School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

As one of the effective and crucial ways to achieve the energy saving and emission reduction of loaders, hybrid technology has attracted the attention of many scholars and manufacturers. Selecting an appropriate energy management strategy (EMS) is essential to reduce fuel consumption and emissions for hybrid loaders (HLs). In this paper, firstly, the application status of drivetrain configuration of HLs is presented. Then, the working condition characteristics of loaders are analyzed. On the basis of this, the configurations of HLs are classified, and the features and research status of each configuration are described. Next, taking the energy consumption optimization of HLs as the object, the implementation principle and research progress of the proposed rule strategy and optimization strategy are compared and analyzed, and the differences of existing EMSs and future development challenges are summarized. Finally, combining the advantages of intelligent control and optimal control, the future prospective development direction of EMSs for HLs is considered. The conclusions of the paper can be identified in two points: firstly, although the existing EMSs can effectively optimize the energy consumption of HLs, the dependence of the strategy on the mechanism model and the vehicle parameters can reduce the applicability of the strategy to heterogeneous HLs and the robustness to a complex working condition. Secondly, combining the advantages of intelligent control and optimal control, designing an intelligent EMS not depending on the vehicle analytical model will provide a new method for solving the energy consumption optimization problem of HL.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference75 articles.

1. Development of electric construction machinery in China: A review of key technologies and future directions;Tong;J. Zhejiang Univ. Sci. A,2021

2. A comprehensive review on energy storage in hybrid electric vehicle;Verma;J. Traffic Transp. Eng. Engl. Ed.,2021

3. A Comprehensive overview of hybrid construction machinery;Wang;Adv. Mech. Eng.,2016

4. The trend and actuality of hybrid power loaders;Wang;Key Eng. Mater.,2014

5. Review of hybrid electric systems for construction machinery;He;Autom. Constr.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3