Effect of a Vibrating Blade in a Channel on the Heat Transfer Performance

Author:

Yuan Xinrui1,Lan Chenyang1,Hu Jinqi1,Fan Yuanhong1,Min Chunhua1

Affiliation:

1. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China

Abstract

A vibrating blade was arranged in a channel to enhance heat transfer. The effects of the frequency and amplitude of the blade on the heat transfer characteristics were numerically researched. The phase space reconstruction and maximum Lyapunov index were used to analyze the transition path and degree of chaos. The results show that the vibrating blade can generate chaos; thus, the heat transfer is enhanced. The convective heat transfer performance is positively correlated with the degree of chaos. In addition, when the frequency is 10 Hz, and the inlet velocity is 0.5 m s−1, the heat transfer can be improved by 16%. When the maximum amplitude of the blade is 8 mm and the inlet velocity is 0.8 m s−1, the heat transfer can be improved by 15%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin in China

Key Training Fund for “Project & Team” of Tianjin in China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3