Affiliation:
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract
Direct power control (DPC) has gained increasing attention in recent years as a simple and efficient control strategy for pulse width modulation (PWM) rectifiers. In this paper, the idea of DPC is introduced into the three-phase coupled inductor-based bipolar-output active rectifier (TCIBAR) for the first time, and a virtual vector-based direct power control (VVB-DPC) strategy is proposed for TCIBAR to realize the bipolar DC power supply for more electric aircraft (MEA). First, the mathematical model of the TCIBAR is deduced, and the basic principle of the classic DPC strategy is reviewed. On this basis, the limitations of the classic DPC strategy in TCIBAR control are analyzed. Second, a set of virtual vectors are derived to establish a novel virtual-vector switching table. Based on the virtual-vector switching table, the hysteresis power control of TCIBAR can be realized without affecting the DC-side neutral-point potential of TCIBAR. Finally, a neutral-point potential control method based on DPC architecture is studied and integrated into the VVB-DPC strategy to maintain the bipolar DC voltage balance of TCIBAR under unbalanced load conditions. The VVB-DPC strategy is experimentally studied on a TCIBAR prototype, and the experimental results verify the feasibility and effectiveness of the proposed strategy.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献