Heat-Transfer Mechanisms in a Solar Cooking Pot with Thermal Energy Storage

Author:

Vanierschot Maarten12ORCID,Mawire Ashmore2ORCID

Affiliation:

1. Department of Mechanical Engineering, KU Leuven, B-3001 Leuven, Belgium

2. Material Science, Innovation and Modelling (MaSIM), North-West University, Mmabatho 2745, South Africa

Abstract

This paper presents a detailed analysis of the heat-transfer mechanisms in a solar cooking pot with thermal energy storage using computational fluid dynamics (CFD). The vast majority of studies on solar cookers have been experimentally performed using local temperature measurements with thermocouples. Therefore, the heat-transfer mechanisms can only be studied using lumped capacitance models as the detailed profiles of temperature and heat fluxes inside the cooker are missing. CFD is an alternative modelling technique to obtain this detailed information. In this study, sunflower oil is used as both cooking fluid and energy storage medium. Comparison of the model with the available experimental data shows that the deviation is within the measurement accuracy of the latter. Hence, despite some assumptions, such as axisymmetry and an estimation of the heat transfer parameters to the ambient, the model is able to describe the involved physical processes accurately. It is shown that, initially, the main heat-transfer mechanism is conduction from the cooker’s bottom towards the thermal energy storage (TES). This heats up the oil near the bottom of the TES, creating convective plumes, which significantly enhance the heat transfer. In equilibrium, about 79% of the incoming solar flux goes towards heating up the TES. The heat is further transferred to the pot, where convective plumes also appear much later in time. However, the heat transfer to the pot is much smaller, with an average heat-transfer coefficient of 1.6 Wm−2K−1 compared to 7.5 Wm−2K−1 for the TES. After two hours of charging, the oil reaches a temperature of 397 K in the TES and 396 K in the cooking pot. Moreover, the temperature distribution in the cooker is quasi-uniform. During the charging period, the storage efficiency of the TES is about 29%. With the results in this study, solar cooking pots with TES can be further optimized towards efficiently transmitting the heat form the solar radiation to the food to be cooked.

Funder

VLIRUOS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3