Investigation on Microsheet Metal Deformation Behaviors in Ultrasonic-Vibration-Assisted Uniaxial Tension with Aluminum Alloy 5052

Author:

Wang ChunjuORCID,Zhang Weiwei,Cheng Lidong,Zhu Changqiong,Wang Xinwei,Han Haibo,He Haidong,Hua Risheng

Abstract

Ultrasonic vibration (UV) is widely used in the forming, joining, machining process, etc. for the acoustic softening effect. For parts with small dimensions, UV with limited output energy is very suitable for the microforming process and has been gaininf more and more attention. In this investigation, UV-assisted uniaxial tensile experiments were carried out utilizing GB 5052 thin sheets of different thicknesses and grain sizes, respectively. The coupling effects of UV and the specimen dimension on the properties of the material were analyzed from the viewpoint of acoustic energy in activating dislocations. A reduction of flow stress was found for the existing acoustic softening effects of UV. Additionally, the residual effects of UV were demonstrated when UV was turned off. The uniform deformation ability of thin sheet could be improved by increasing the hardening exponent with UV. The experimental results indicate that UV is very helpful in improving the forming limit in microsheet forming, e.g., microbulging and deep drawing processes.

Funder

Natural Science Foundation of Jiangsu Province

National Science Foundation of China

Six Talent Peaks in Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3