Use of Probabilistic Approaches to Predict Cash Deficits

Author:

Slobodnyak IlyaORCID,Sidorov AnatolyORCID,Alekseev Denis

Abstract

This article deals with issues related to the use of mathematical methods of cash deficit probability predictions. A number of objective and subjective factors are described that prevent the wide integration of mathematical methods in the practical activities of economists. It is justified that, due to the large number of external and internal factors affecting the economic system state, the values of indicators of an economic system state are often random. The possibility of using probability theory methods to predict the occurrence of cash deficits is proved. Using empirical data including the results of thousands of observations, the possibility of using the normal distribution density function for the purpose of predicting insufficient funds for payment is illustrated. The essence of the proposed model is that it contains a prediction of a macrotrend—i.e., the risk of a cash gap—based on high-frequency microlevel data. At the same time, a prediction of the probability of a cash deficit, and not its estimation for a specific date, was made. This is the main difference between the described model and common scoring estimates. This article proposes an approach to estimate the probability of a cash deficit based on data from a specific business entity, rather than aggregated data from other organizations.

Funder

This research was funded by Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Mathematics for Economic Analysis;Sydsaeter,1995

2. Course in Mathematical Economics;Danilov,2002

3. Modeling of Economic Processes;Gracheva,2005

4. Mathematical Economics;Kolemaev,2005

5. Methods of Financial and Commercial Settlements;Chetyrkin,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3