Abstract
This work presents a novel approach for multiobjective optimization problems, extending the concept of a Pareto front to a new idea of the Pareto region. This new concept provides all the points beyond the Pareto front, leading to the same optimal condition with statistical assurance. This region is built using a Fisher–Snedecor test over an augmented Lagragian function, for which deductions are proposed here. This test is meant to provide an approximated depiction of the feasible operation region while using meta-heuristic optimization results to extract this information. To do so, a Constrained Sliding Particle Swarm Optimizer (CSPSO) was applied to solve a series of four benchmarks and a case study. The proposed test analyzed the CSPSO results, and the novel Pareto regions were estimated. Over this Pareto region, a clustering strategy was also developed and applied to define sub-regions that prioritize one of the objectives and an intermediary region that provides a balance between objectives. This is a valuable tool in the context of process optimization, aiming at assertive decision-making purposes. As this is a novel concept, the only way to compare it was to draw the entire regions of the benchmark functions and compare them with the methodology result. The benchmark results demonstrated that the proposed method could efficiently portray the Pareto regions. Then, the optimization of a Pressure Swing Adsorption unit was performed using the proposed approach to provide a practical application of the methodology developed here. It was possible to build the Pareto region and its respective sub-regions, where each process performance parameter is prioritized. The results demonstrated that this methodology could be helpful in processes optimization and operation. It provides more flexibility and more profound knowledge of the system under evaluation.
Funder
Fundação para a Ciência e Tecnologia
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献