Bayesian Inference for Stochastic Cusp Catastrophe Model with Partially Observed Data

Author:

Chen Ding-GengORCID,Gao HaipengORCID,Ji Chuanshu

Abstract

The purpose of this paper is to develop a data augmentation technique for statistical inference concerning stochastic cusp catastrophe model subject to missing data and partially observed observations. We propose a Bayesian inference solution that naturally treats missing observations as parameters and we validate this novel approach by conducting a series of Monte Carlo simulation studies assuming the cusp catastrophe model as the underlying model. We demonstrate that this Bayesian data augmentation technique can recover and estimate the underlying parameters from the stochastic cusp catastrophe model.

Funder

South Africa DST-NRF-SAMRC SARChI Research Chair in Biostatistics

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference19 articles.

1. Catastrophe theory: Its present state and future perspectives;Thom,1974

2. Structural Stability and Morphogenesis;Thom,1975

3. Structural Stability and Morphogenesis: An Outline of a General Theory of Models;Thom,1975

4. Applications of Catastrophe Theory in the Behavioral and Life Sciences;Cobb,1978

5. Estimation Theory for the Cusp Catastrophe Model;Cobb,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3