Rational Approximation Method for Stiff Initial Value Problems

Author:

Karimov ArturORCID,Butusov DenisORCID,Andreev  ValeryORCID,Nepomuceno Erivelton G.ORCID

Abstract

While purely numerical methods for solving ordinary differential equations (ODE), e.g., Runge–Kutta methods, are easy to implement, solvers that utilize analytical derivations of the right-hand side of the ODE, such as the Taylor series method, outperform them in many cases. Nevertheless, the Taylor series method is not well-suited for stiff problems since it is explicit and not A-stable. In our paper, we present a numerical-analytical method based on the rational approximation of the ODE solution, which is naturally A- and A(α)-stable. We describe the rational approximation method and consider issues of order, stability, and adaptive step control. Finally, through examples, we prove the superior performance of the rational approximation method when solving highly stiff problems, comparing it with the Taylor series and Runge–Kutta methods of the same accuracy order.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. Solving Ordinary Differential Equations I: Nonstiff Problems;Hairer,1987

2. Solving Ordinary Differential Equations Using Taylor Series

3. Algorithm 924

4. Taylor Series Method with Numerical Derivatives for numerical solution of ODE initial values problems;Miletics;Hung. Electron. J. Sci.,2003

5. Simulating Hamiltonian Dynamics with a Truncated Taylor Series

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3