Deep Learning Method Based on Spectral Characteristic Rein-Forcement for the Extraction of Winter Wheat Planting Area in Complex Agricultural Landscapes

Author:

Sun Hanlu1,Wang Biao123ORCID,Wu Yanlan2345,Yang Hui6

Affiliation:

1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China

2. Anhui Engineering Research Center for Geographical Information Intelligent Technology, Hefei 230601, China

3. Engineering Center for Geographic Information of Anhui Province, Hefei 230601, China

4. School of Artificial Intelligence, Anhui University, Hefei 230601, China

5. Information Materials and Intelligent Sensing Laboratory of Anhui Province, Hefei 230601, China

6. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

Abstract

Winter wheat is one of the most important food crops in the world. Remote sensing technology can be used to obtain the spatial distribution and planting area of winter wheat in a timely and accurate manner, which is of great significance for agricultural management. Influenced by the growth conditions of winter wheat, the planting structures of the northern and southern regions differ significantly. Therefore, in this study, the spectral and phenological characteristics of winter wheat were analyzed in detail, and four red-edge vegetation indices (NDVI, NDRE, SRre, and CIred-edge) were included after band analysis to enhance the ability of the characteristics to extract winter wheat. These indices were combined with a deep convolutional neural network (CNN) model to achieve intelligent extraction of the winter wheat planting area in a countable number of complex agricultural landscapes. Using this method, GF-6 WFV and Sentinel-2A remote sensing data were used to obtain full coverage of the region to evaluate the geographical environment differences. This spectral characteristic enhancement method combined with a CNN could extract the winter wheat data well for both data sources, with average overall accuracies of 94.01 and 93.03%, respectively. This study proposes a method for fast and accurate extraction of winter wheat in complex agricultural landscapes that can provide decision support for national and local intelligent agricultural construction. Thus, our study has important application value and practical significance.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Anhui

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3