Brightness Temperature and Wet Tropospheric Correction of HY-2C Calibration Microwave Radiometer Using Model-Derived Wet Troposphere Path Delay from ECMWF

Author:

Zheng Xiaomeng12,Zhang Dehai1,Zhao Jin1,Jiang Maofei1ORCID

Affiliation:

1. Key Laboratory of Microwave Remote Sensing Technology, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100040, China

Abstract

The Calibration Microwave Radiometer (CMR) is a three-band radiometer deployed on the HY-2C satellite in a near-Earth orbit, and since it launched, there are few studies presented on the performance of CMR to date. Therefore, this paper focuses on providing an assessment of HY-2C CMR brightness temperature and wet troposphere correction (WTC). CMR works at 18.7 GHz, 23.8 GHz and 37 GHz in a nadir-viewing direction, aligned with the HY-2C radar altimeter. The wet troposphere path delay of the radar altimeter signal caused by water vapour and cloud liquid water content can be monitored and corrected by CMR. In this paper, guided by the concept of antenna pattern correction algorithm and a purely statistical method, we directly establish the function between the CMR antenna temperature and the model-derived WTC calculated by the European Centre from Medium-Range Weather Forecasting (ECMWF) Reanalysis data, which can obtain the brightness temperature and the WTC of CMR simultaneously. Firstly, the algorithm principle of CMR to establish the function between the antenna temperature and the model-derived WTC is introduced, and then the brightness temperature of CMR is evaluated using reference brightness temperatures of the Advanced Microwave Radiometer 2 (AMR-2) on Jason-3 satellite at crossover points. Furthermore, the performance of the CMR WTC is validated in three ways: (1) directly comparing with the colocated WTC measured by Jason-3 AMR-2, (2) directly comparing with model-derived WTC from ECMWF, which allows a rapid check at a global scale, (3) comparing the standard deviation of the Sea Surface Height (SSH) difference at crossover points using different WTC retrieval methods. The linear fit with Jason-3 brightness temperature and WTC in all non-precipitation conditions demonstrated a good agreement with Jason-3. In addition, the WTC of CMR has an obvious decrease in the standard deviation of the SSH difference compared with model-derived WTC, indicating the CMR can significantly improve the accuracy of the HY-2C SSH measurements. All the assessments indicate that the CMR performances are satisfying the expectations and fulfilling the mission requirements.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3