Multi-Modal Multi-Stage Underwater Side-Scan Sonar Target Recognition Based on Synthetic Images

Author:

Wang Jian123ORCID,Li Haisen123,Huo Guanying4,Li Chao123ORCID,Wei Yuhang123

Affiliation:

1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China

2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China

3. Key Laboratory of Marine Information Acquisition and Security (Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China

4. College of Internet of Things Engineering, Hohai University, Changzhou 213022, China

Abstract

Due to the small sample size of underwater acoustic data and the strong noise interference caused by seabed reverberation, recognizing underwater targets in Side-Scan Sonar (SSS) images is challenging. Using a transfer-learning-based recognition method to train the backbone network on a large optical dataset (ImageNet) and fine-tuning the head network with a small SSS image dataset can improve the classification of sonar images. However, optical and sonar images have different statistical characteristics, directly affecting transfer-learning-based target recognition. In order to improve the accuracy of underwater sonar image classification, a style transformation method between optical and SSS images is proposed in this study. In the proposed method, objects with the SSS style were synthesized through content image feature extraction and image style transfer to reduce the variability of different data sources. A staged optimization strategy using multi-modal data effectively captures the anti-noise features of sonar images, providing a new learning method for transfer learning. The results of the classification experiment showed that the approach is more stable when using synthetic data and other multi-modal datasets, with an overall accuracy of 100%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

key areas of research and development plan key projects of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3