People Flow Trend Estimation Approach and Quantitative Explanation Based on the Scene Level Deep Learning of Street View Images

Author:

Zhao Chenbo1ORCID,Ogawa Yoshiki2ORCID,Chen Shenglong1ORCID,Oki Takuya3ORCID,Sekimoto Yoshihide2

Affiliation:

1. Department of Civil Engineering, The University of Tokyo, Tokyo 153-8505, Japan

2. Center for Spatial Information Science (CSIS), University of Tokyo, Tokyo 153-8505, Japan

3. School of Environment and Society, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Abstract

People flow trend estimation is crucial to traffic and urban safety planning and management. However, owing to privacy concerns, the collection of individual location data for people flow statistical analysis is difficult; thus, an alternative approach is urgently needed. Furthermore, the trend in people flow is reflected in streetscape factors, yet the relationship between them remains unclear in the existing literature. To address this, we propose an end-to-end deep-learning approach that combines street view images and human subjective score of each street view. For a more detailed people flow study, estimation and analysis were implemented using different time and movement patterns. Consequently, we achieved a 78% accuracy on the test set. We also implemented the gradient-weighted class activation mapping deep learning visualization and L1 based statistical methods and proposed a quantitative analysis approach to understand the land scape elements and subjective feeling of street view and to identify the effective elements for the people flow estimation based on a gradient impact method. In summary, this study provides a novel end-to-end people flow trend estimation approach and sheds light on the relationship between streetscape, human subjective feeling, and people flow trend, thereby making an important contribution to the evaluation of existing urban development.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3