Oriented Object Detection in Aerial Images Based on the Scaled Smooth L1 Loss Function

Author:

Wei Linhai1,Zheng Chen2,Hu Yijun1

Affiliation:

1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. School of Mathematics and Statistics, Henan University, Kaifeng 475001, China

Abstract

Although many state-of-the-art object detectors have been developed, detecting small and densely packed objects with complicated orientations in remote sensing aerial images remains challenging. For object detection in remote sensing aerial images, different scales, sizes, appearances, and orientations of objects from different categories could most likely enlarge the variance in the detection error. Undoubtedly, the variance in the detection error should have a non-negligible impact on the detection performance. Motivated by the above consideration, in this paper, we tackled this issue, so that we could improve the detection performance and reduce the impact of this variance on the detection performance as much as possible. By proposing a scaled smooth L1 loss function, we developed a new two-stage object detector for remote sensing aerial images, named Faster R-CNN-NeXt with RoI-Transformer. The proposed scaled smooth L1 loss function is used for bounding box regression and makes regression invariant to scale. This property ensures that the bounding box regression is more reliable in detecting small and densely packed objects with complicated orientations and backgrounds, leading to improved detection performance. To learn rotated bounding boxes and produce more accurate object locations, a RoI-Transformer module is employed. This is necessary because horizontal bounding boxes are inadequate for aerial image detection. The ResNeXt backbone is also adopted for the proposed object detector. Experimental results on two popular datasets, DOTA and HRSC2016, show that the variance in the detection error significantly affects detection performance. The proposed object detector is effective and robust, with the optimal scale factor for the scaled smooth L1 loss function being around 2.0. Compared to other promising two-stage oriented methods, our method achieves a mAP of 70.82 on DOTA, with an improvement of at least 1.26 and up to 16.49. On HRSC2016, our method achieves an mAP of 87.1, with an improvement of at least 0.9 and up to 1.4.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3