Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China

Author:

Yang Zongji1ORCID,Pang Bo12,Dong Wufan12,Li Dehua12

Affiliation:

1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

On 5 September 2022, an Mw 6.6 earthquake occurred in Luding County in China, resulting in extensive surface rupture and casualties. Sufficient study on distribution characteristics and susceptibility regionalization of the earthquake-induced disasters (especially coseismic landslides) in the region has great significance to mitigation of seismic hazards. In this study, a complete coseismic landslide inventory, including 6233 landslides with 32.4 km2 in area, was present through multi-temporal satellite images. We explored the distribution and controlling conditions of coseismic landslides induced by the 2022 Luding event from the perspective of epicentral distance. According to the maximum value of landslide area density, the geographical location with the strongest coseismic landslide activity intensity under the influence of seismic energy, the macro-epicenter, was determined, and we found a remarkable relationship with the landslide distribution and macro-epicentral distance, that is, both the landslide area and number density associatively decreased with the increase in macro-epicentral distance. Then, a fast and effective method for coseismic landslide intensity zoning based on the obvious attenuation relationship was proposed, which could provide theoretical reference for susceptibility mapping of coseismic landslides induced by earthquakes in mountainous areas. Additionally, to quantitatively assess the impact of topographic, seismogenic and lithological factors on the spatial pattern of coseismic landslides, the relationships between the occurrences of coseismic landslides and influencing factors, i.e., elevation, slope angle, local relief, aspect, distance to fault and lithology, were examined. This study provides a fresh perspective on intensity zoning of coseismic landslides and has important guiding significance for post-earthquake reconstruction and land use in the disaster area.

Funder

Western Light in Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3