Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery

Author:

Vatitsi Katerina1ORCID,Siachalou Sofia1,Latinopoulos Dionissis2ORCID,Kagalou Ifigenia2ORCID,Akratos Christos S.2ORCID,Mallinis Giorgos1ORCID

Affiliation:

1. School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Laboratory of Sanitary Engineering and Water-Wastewater Quality, Civil Engineering Department, Democritus University of Thrace, 69100 Komotini, Greece

Abstract

Freshwater ecosystems provide an array of provisioning, regulating/maintenance, and cultural ecosystem services. Despite their crucial role, freshwater ecosystems are exceptionally vulnerable due to changes driven by both natural and human factors. Water quality is essential for assessing the condition and ecological health of freshwater ecosystems, and its evaluation involves various water quality parameters. Remote sensing has become an efficient approach for retrieving and mapping these parameters, even in optically complex waters such as small rivers. This study specifically focuses on modelling two non-optically active water quality parameters, dissolved oxygen (DO) and electrical conductivity (EC), by integrating 3 m PlanetScope satellite imagery with data from real-time in situ remote monitoring sensors across two small rivers in Thrace, Northeast Greece. We employed three different experimental setups using a support vector regression (SVR) algorithm: ‘Multi-seasonal by Individual Sensor’ (M-I-S) for individual sensor analysis across two seasons, ‘Multi-seasonal—All Sensors’ (M-A-S) integrating data across all seasons and sensors, and ‘Seasonal—All Sensors’ (S-A-S) focusing on per-season sensor data. The models incorporating multiple seasons and all in situ sensors resulted in R2 values of 0.549 and 0.657 for DO and EC, respectively. A multi-seasonal approach per in situ sensor resulted in R2 values of 0.885 for DO and 0.849 for EC. Meanwhile, the seasonal approach, using all in situ sensors, achieved R2 values of 0.805 for DO and 0.911 for EC. These results underscore the significant potential of combining PlanetScope data and machine learning to model these parameters and monitor the condition of ecosystems over small river surfaces.

Funder

Eye4Water project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of aquaculture: From single modality analysis to multimodality fusion;Computers and Electronics in Agriculture;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3