Yaw Moment Control Based on Brake-by-Wire for Vehicle Stbility

Author:

Li Hongfang1,Wang Kai2,Hao Huimin2,Wu Zhifei2

Affiliation:

1. Mechanical Engineering Department, Shanxi Vocational College of Economics and Trade, Taiyuan 030024, China

2. School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

This paper presents a new control strategy for vehicle stability based on brake-by-wire. However, there are few studies in the literature that compare the stability of a vehicle by systematic experimentation with or without controllers. In this paper, the complete experimental procedure is designed, and the experimental results are analyzed in detail. Firstly, the hydraulic model of the brake-by-wire is established based on its structure and working principles, and the yaw moment control method is proposed for the vehicle’s stability. The deviation between the desired values and actual values of the yaw rate and sideslip angle is taken as the input, and the fuzzy controller calculates the additional yaw moment for the vehicle stability. Next, the simulation under different conditions which contain the steering wheel step input, double lane change and turning is conducted, and the yaw rates and sideslip angles with and without stability control are compared, and the effectiveness of the control method is verified. Finally, the turning test is conducted based on brake-by-wire chassis to verify the proposed method. The experimental results show that the yaw rate decreased by 14% and the sideslip angle decreased by 25% when the brake control was applied. Furthermore, the proposed method performed well in improving the stability of the brake-by-wire chassis.

Funder

Natural Science Foundation of Shanxi province

Shanxi Province Foundation for Returness

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic control method of diesel locomotive braking system based on PLC technology;Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023);2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3