Prototype of a System for Tracking Transit Service Based on IoV, ITS, and Machine Learning

Author:

Sánchez Díaz Camilo1ORCID,Díaz Lucio Andersson1ORCID,Salazar-Cabrera Ricardo1ORCID,Pachón de la Cruz Álvaro2ORCID,Madrid Molina Juan2ORCID

Affiliation:

1. Telematics Engineering Research Group (GIT), Telematics Department, Universidad del Cauca, Popayán 190003, Colombia

2. Information Technology and Telecommunications Research Group (I2T), ICT Department, Universidad Icesi, Cali 760001, Colombia

Abstract

The transit service in a city should be the most efficient, least polluting, most accessible, and sustainable means of transportation for its citizens. However, serious shortcomings have been detected, mainly in medium-sized cities in developing countries. These shortcomings are related to a lack of user information, insecurity, low service availability, and repeated stops in inappropriate and/or unauthorized places. Some of these shortcomings contribute to high accident rates and traffic congestion. The development of tools to improve the characteristics and conditions of transit service in cities has become an imperative need to improve the quality of life of citizens and city sustainability. Transit service tracking is relevant in aspects such as online location information to travelers and control by transport companies for compliance with speed limits, schedules, routes, and stops. This research proposes a transit vehicle tracking system based on the Internet of Vehicles (IoV) in Vehicle-to-Roadside (V2R) classification. The proposed system is ideal for the use of electric vehicles due to the low power consumption of the tracking device. This system uses Intelligent Transportation Systems (ITS) tracking service architecture, Long Range (LoRa) communication technology, and its LoRa Wide Area Network (LoRaWAN) protocol. Additionally, the system offers real-time location prediction in the absence of position data. The IoV tracking device integrates a GPS-LoRa module card with an Inertial Measurement Unit (IMU). A location prediction algorithm was implemented to train and store a prediction model with previously collected data from tracking devices. To evaluate the developed model, a case study in the city of Popayán (Colombia) was implemented, using three routes for testing. The results of the system implementation were satisfactory, obtaining an average coverage of 60.4% of the routes in the final field tests through LoRa communication. For the remaining 39.6% of the routes, location data prediction was used, with an average accuracy of 177 m with respect to the real location. Considering the obtained results, a tracking system such as the one proposed in this article can be used in the transit systems of medium-sized cities in developing countries to improve service quality and fleet control.

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3