Tree-Ring Stable Carbon Isotope-Based Mean Maximum Temperature Reconstruction in Northwest China and Its Connection with Atmospheric Circulations

Author:

Wang YanchaoORCID,Li QiangORCID,Liu Yu,Duan Xiangyu,Sun Changfeng,Song Huiming,Cai QiufangORCID,Liu Xin

Abstract

The inter-annual stable carbon isotope ratio (δ13C) of three tree-ring cores of P. euphratica (Populus euphratica Oliv.) was determined from Ejina Oasis in Northwest China. A robust and representative δ13C chronology is generated from the three δ13C series using an arithmetic mean method. After eliminating the influence of the δ13C from elevated atmospheric carbon dioxide (CO2) concentration, we obtained a carbon isotopic discrimination (Δ13C) chronology. According to the significant correlation between the tree-ring Δ13C and instrumental data, we reconstructed the mean maximum temperature anomalies from previous December to current September (TDS) for the period 1901–2011. The reconstruction explained 43.6% of the variance over the calibration period. Three high-temperature periods (1929–1965, 1972–1974, and 1992–2006) and three low-temperature periods (1906–1926, 1966–1968, and 1975–1991) were found in the reconstructed series. Comparisons between the reconstructed TDS and the observed mean temperature from previous December to current September in Anxi meteorological station and the temperature index in north-central China demonstrated the reconstructed TDS has the advantage of reliability and stability. The significant spatial correlation declared that the reconstruction has a broad spatial representation and can represent the temperature variation characteristics in a wide geographical area. In addition, we found that the area of Ejina Oasis is smaller (larger) when the mean maximum temperature is higher (lower), which may be due to a conjunction effect of natural and anthropogenic activities. Significant periodicities and correlations suggested that the TDS variations in Ejina Oasis were regulated by solar radiation and atmospheric circulations at the interannual and interdecadal time scales.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

STEP program

Xingtai Technology Bureau

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3