Quantitative Assessment of the Spatial Scale Effects of the Vegetation Phenology in the Qinling Mountains

Author:

Ma Minfei,Liu JianhongORCID,Liu Mingxing,Zhu WenquanORCID,Atzberger ClementORCID,Lv Xiaoqing,Dong Ziyue

Abstract

Vegetation phenology reflects the temporal dynamics of vegetation growth and is an important indicator of climate change. However, differences consistently exist in land surface phenology derived at different spatial scales, which hinders the understanding of phenological events and integration of land surface phenology products from different scales. The Qinling Mountains are a climatic and geographical transitional region in China. To better understand the spatial scale effect issues of land surface phenology in mountainous ecosystems, this study up-scaled vegetation start of season (SOS) and end of season (EOS) in the Qinling Mountains derived from three different Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) products to four scales (i.e., 2 km × 2 km, 4 km × 4 km, 6 km × 6 km, and 8 km × 8 km) using the spatial averaging method. Then, similarities and differences between the up-scaled SOSs/EOSs were examined using the simple linear regression, cumulative distribution function, and absolute difference. Finally, the random forest model was used to reveal the major factors influencing the spatial scale effect of land surface phenology in Qinling Mountains. Results showed that the derived basic SOS/EOS datasets using the same filtering method from the 250 m and 500 m NDVI datasets were consistent in spatial distribution, while the results from the 1000 m NDVI dataset differed. For both the basic and the up-scaled datasets, the land surface phenology derived from the Savitzky-Golay-filtered NDVI showed an advance in SOS, but a delay in EOS, compared to those derived from the asymmetric Gaussian- and double logistic-filtered NDVI. The up-scaled SOS was greatly impacted by both NDVI resolution and the filtering methods. On the other hand, EOS was mostly impacted by the filtering methods. Moreover, up-scaled SOSs usually had larger differences compared to up-scaled EOSs. While different filtering methods sometimes amplified the absolute differences between different SOS/EOS across scales, the upscaling reduced the differences. Influence factor analysis showed that spatial variations observed in SOS in Qinling Mountains were mainly caused by forest cover, uneven distribution of spring precipitation, and annual precipitation, while spatial variations in aspect, winter temperature, and autumn precipitation all strongly influenced the observed EOS across scales in the study area. These findings enhance our understanding of the effects of observational scale on vegetation phenology in mountain ecosystems and provide a reference for phenology modeling in mountainous areas.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3