Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China

Author:

Zhang Minghui,Liu Di,Wang Siyuan,Xiang Haibing,Zhang Wenxiu

Abstract

On 20 July 2021, an extraordinary rainfall event occurred in Henan Province, China, resulting in heavy waterlogging, flooding, and hundreds of fatalities and causing considerable property damage. Because the damaged region was a major grain-producing region of China, assessing crop food production losses following this event is very important. Because the crop rotation production system is utilized in the region to accommodate two crops per year, it is very valuable to accurately identify the types of crops affected by the event and to assess the crop production losses separately; however, the results obtained using these methods are still inadequate. In this study, we used China’s first commercial synthetic aperture radar (SAR) data source, named Hisea-1, together with other open-source and widely used remote sensing data (Sentinel-1 and Sentinel 2), to monitor this catastrophic flood. Both the modified normalized difference water index (MNDWI) and Sentinel-1 dual-polarized water index (SDWI) were calculated, and an unsupervised classification (k-means) method was adopted for rapid water body extraction. Based on time-series datasets synthesized from multiple sources, we obtained four flooding characteristics, including the flooded area, flood duration, and start and end times of flooding. Then, according to these characteristics, we conducted a more precise analysis of the damages to flooded farmlands. We used the Google Earth Engine (GEE) platform to obtain normalized difference vegetation index (NDVI) time-series data for the disaster year and normal years and overlaid the flooded areas to extract the effects of flooding on crop species. According to the statistics from previous years, we calculated the areas and types of damaged crops and the yield reduction amounts. Our results showed that (1) the study area endured two floods in July and September of 2021; (2) the maximum areas affected by these two flooding events were 380.2 km2 and 215.6 km2, respectively; (3) the floods significantly affected winter wheat and summer grain (maize or soybean), affecting areas of 106.4 km2 and 263.3 km2, respectively; and (4) the crop production reductions in the affected area were 18,708 t for winter wheat and 160,000 t for maize or soybean. These findings indicate that the temporal-dimension information, as opposed to the traditional use of the affected area and the yield per unit area when estimating food losses, is very important for accurately estimating damaged crop types and yield reductions. Time-series remote sensing data, especially SAR remote sensing data, which have the advantage of penetrating clouds and rain, play an important role in remotely sensed disaster monitoring. Hisea-1 data, with a high spatial resolution and first flood-monitoring capabilities, show their value in this study and have the potential for increased usage in further studies, such as urban flooding research. As such, the approach proposed herein is worth expanding to other applications, such as studies of water resource management and lake/wetland hydrological changes.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Seasonal and regional variations in extreme precipitation event frequency using CMIP5;Geophys. Res. Lett.,2016

2. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014;Atmos. Res.,2017

3. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2014). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. Highlights of the IPCC Working Group I Fifth Assessment Report;Progress. Inquisitiones Mutat. Clim.,2014

5. Re, S. (2018). Flood—An Underestimated Risk: Inspect, Inform, Insure, Swiss Reinsurance Company Ltd.. Available via Swiss Re.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3