Radar Intra–Pulse Signal Modulation Classification with Contrastive Learning

Author:

Cai Jingjing,Gan Fengming,Cao Xianghai,Liu Wei,Li Peng

Abstract

The existing research on deep learning for radar signal intra–pulse modulation classification is mainly based on supervised leaning techniques, which performance mainly relies on a large number of labeled samples. To overcome this limitation, a self–supervised leaning framework, contrastive learning (CL), combined with the convolutional neural network (CNN) and focal loss function is proposed, called CL––CNN. A two–stage training strategy is adopted by CL–CNN. In the first stage, the model is pretrained using abundant unlabeled time–frequency images, and data augmentation is used to introduce positive–pair and negative–pair samples for self–supervised learning. In the second stage, the pretrained model is fine–tuned for classification, which only uses a small number of labeled time–frequency images. The simulation results demonstrate that CL–CNN outperforms the other deep models and traditional methods in scenarios with Gaussian noise and impulsive noise–affected signals, respectively. In addition, the proposed CL–CNN also shows good generalization ability, i.e., the model pretrained with Gaussian noise–affected samples also performs well on impulsive noise–affected samples.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LPI Radar Sequence Design Against Cyclostationary Analysis;Defence Technology;2024-08

2. Hologram Noise Model for Data Augmentation and Deep Learning;Sensors;2024-02-01

3. A Spatiotemporal Dual-Attention Network for Automatic LPI Radar Modulation Recognition;2023 9th International Conference on Computer and Communications (ICCC);2023-12-08

4. Radar Intra-Pulse Signal Modulation Classification Based on Omni-Dimensional Dynamic Convolution;2023 8th International Conference on Signal and Image Processing (ICSIP);2023-07-08

5. Co-Channel Multi-User Modulation Classification Using Data-Driven Blind Signal Separation;IEEE Internet of Things Journal;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3