The Inversion of HY-1C-COCTS Ocean Color Remote Sensing Products from High-Latitude Seas

Author:

Li Hao,He Xianqiang,Ding Jing,Bai Yan,Wang DifengORCID,Gong Fang,Li Teng

Abstract

China’s first operational ocean color satellite sensor, named the Chinese Ocean Color and Temperature Scanner (HY-1C-COCTS), was launched in September 2018 and began to provide operational data in June 2019. However, as a polar orbiting ocean color satellite sensor, HY-1C-COCTS would inevitably encounter regions impacted by large solar zenith angles when observing the high-latitude seas, especially during the winter. The current atmospheric correction algorithm used by ocean color satellite data processing software cannot effectively process observation data with solar zenith angles greater than 70°. This results in a serious lack of effective ocean color product data from high-latitude seas in winter. To solve this problem, this study developed an atmospheric correction algorithm based on a neural network model for use with HY-1C-COCTS data. The new algorithm used HY-1C-COCTS satellite data collected from latitudes greater than 50°N and between April 2020 and April 2021 to establish a direct relationship between the total radiance received by the satellite and the remote sensing reflectance products. The evaluation using the test dataset shows that the inversion accuracy of the new algorithm is relatively high under different solar zenith angles and different HY-1C-COCTS bands (the relative deviation is 3.37%, 7.05%, 5.10%, 5.29%, and 10.06% at 412 nm, 443 nm, 490 nm, 520 nm, and 565 nm, respectively; the relative deviation is 1.07% when the solar zenith angle is large (70~90°)). Cross comparison with MODIS Aqua satellite products shows that the inversion results are consistent. After verifying the accuracy and stability of the algorithm, we reconstructed the remote sensing reflectance dataset from the Arctic Ocean and surrounding high-latitude seas (latitude greater than 50°N) and successfully retrieved chlorophyll-a data and information on other marine ecological parameters.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China Youth Fund

Scientific Research Fund of the Second Institute of Oceanography

Zhejiang Province Preferential Fund for Post Doctoral Research Projects

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Application of Ocean-1C Satellite in Natural Disaster Monitoring;Liu;Satell. Appl.,2020

2. Performance of COCTS in global ocean color remote sensing;Chen;IEEE Trans. Geosci. Remote Sens.,2020

3. Optical remote sensing identification of oil spill pollution type of the “Sangji” ship in the East China Sea;Lu;Chin. Sci. Bull.,2019

4. Analysis of the oil spill recognition ability of Haiyang-1C star optical payload;Shen;Chin. J. Remote Sens.,2020

5. Atmospheric correction of geostationary satellite ocean color data under high solar zenith angles in open oceans;Li;Remote Sens. Environ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3