Abstract
China’s first operational ocean color satellite sensor, named the Chinese Ocean Color and Temperature Scanner (HY-1C-COCTS), was launched in September 2018 and began to provide operational data in June 2019. However, as a polar orbiting ocean color satellite sensor, HY-1C-COCTS would inevitably encounter regions impacted by large solar zenith angles when observing the high-latitude seas, especially during the winter. The current atmospheric correction algorithm used by ocean color satellite data processing software cannot effectively process observation data with solar zenith angles greater than 70°. This results in a serious lack of effective ocean color product data from high-latitude seas in winter. To solve this problem, this study developed an atmospheric correction algorithm based on a neural network model for use with HY-1C-COCTS data. The new algorithm used HY-1C-COCTS satellite data collected from latitudes greater than 50°N and between April 2020 and April 2021 to establish a direct relationship between the total radiance received by the satellite and the remote sensing reflectance products. The evaluation using the test dataset shows that the inversion accuracy of the new algorithm is relatively high under different solar zenith angles and different HY-1C-COCTS bands (the relative deviation is 3.37%, 7.05%, 5.10%, 5.29%, and 10.06% at 412 nm, 443 nm, 490 nm, 520 nm, and 565 nm, respectively; the relative deviation is 1.07% when the solar zenith angle is large (70~90°)). Cross comparison with MODIS Aqua satellite products shows that the inversion results are consistent. After verifying the accuracy and stability of the algorithm, we reconstructed the remote sensing reflectance dataset from the Arctic Ocean and surrounding high-latitude seas (latitude greater than 50°N) and successfully retrieved chlorophyll-a data and information on other marine ecological parameters.
Funder
National Natural Science Foundation of China
National Natural Science Foundation of China Youth Fund
Scientific Research Fund of the Second Institute of Oceanography
Zhejiang Province Preferential Fund for Post Doctoral Research Projects
Subject
General Earth and Planetary Sciences
Reference33 articles.
1. Application of Ocean-1C Satellite in Natural Disaster Monitoring;Liu;Satell. Appl.,2020
2. Performance of COCTS in global ocean color remote sensing;Chen;IEEE Trans. Geosci. Remote Sens.,2020
3. Optical remote sensing identification of oil spill pollution type of the “Sangji” ship in the East China Sea;Lu;Chin. Sci. Bull.,2019
4. Analysis of the oil spill recognition ability of Haiyang-1C star optical payload;Shen;Chin. J. Remote Sens.,2020
5. Atmospheric correction of geostationary satellite ocean color data under high solar zenith angles in open oceans;Li;Remote Sens. Environ.,2020
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献