Unlocking Large-Scale Crop Field Delineation in Smallholder Farming Systems with Transfer Learning and Weak Supervision

Author:

Wang SherrieORCID,Waldner FrançoisORCID,Lobell David B.ORCID

Abstract

Crop field boundaries aid in mapping crop types, predicting yields, and delivering field-scale analytics to farmers. Recent years have seen the successful application of deep learning to delineating field boundaries in industrial agricultural systems, but field boundary datasets remain missing in smallholder systems due to (1) small fields that require high resolution satellite imagery to delineate and (2) a lack of ground labels for model training and validation. In this work, we use newly-accessible high-resolution satellite imagery and combine transfer learning with weak supervision to address these challenges in India. Our best model uses 1.5 m resolution Airbus SPOT imagery as input, pre-trains a state-of-the-art neural network on France field boundaries, and fine-tunes on India labels to achieve a median Intersection over Union (mIoU) of 0.85 in India. When we decouple field delineation from cropland classification, a model trained in France and applied as-is to India Airbus SPOT imagery delineates fields with a mIoU of 0.74. If using 4.8 m resolution PlanetScope imagery instead, high average performance (mIoU > 0.8) is only achievable for fields larger than 1 hectare. Experiments also show that pre-training in France reduces the number of India field labels needed to achieve a given performance level by as much as 10× when datasets are small. These findings suggest our method is a scalable approach for delineating crop fields in regions of the world that currently lack field boundary datasets. We publicly release 10,000 Indian field boundary labels and our delineation model to facilitate the creation of field boundary maps and new methods by the community.

Funder

NASA Harvest Consortium

Stanford’s Institute for Human-Centered Artificial Intelligence

Ciriacy-Wantrup Postdoctoral Fellowship at the University of California, Berkeley

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3