Abstract
Rainfall-induced shallow landslides are widespread throughout the world, and vegetation is frequently utilized to control them. However, in recent years, shallow landslides have continued to frequently occur during the rainy season on the vegetated slopes of the Loess Plateau in China. To better probe this phenomenon, we considered vegetation cover in the sensitivity analysis of landslide hazards and used the transient rainfall infiltration and grid-based regional slope stability (TRIGRS) model to quantitatively describe the impacts of different types of vegetation cover on slope stability. Based on the rainfall information for landslide events, the spatiotemporal distributions of the pore water pressure and the factor of safety of the vegetated slopes were inverted under the driving changes in the soil properties under different vegetation types, and the average prediction accuracy reached 79.88%. It was found that there was a strong positive correlation between the cumulative precipitation and the proportion of landslide-prone areas in woodland covered by tall trees, grassland covered by shrubs and grasses, and cultivated land. The highest landslide susceptibility, which has the greatest potential to hasten the occurrence of rainfall-induced landslides, is found in woodland with tall trees. Therefore, this paper proposes the promoting relationship between vegetation and landslide erosion, which provides a new scientific perspective on watershed management to prevent shallow landslide disasters and manage and develop watershed vegetation.
Funder
Natural Science Basic Research Program of Shaanxi
National Natural Science Foundation of China
Second Tibetan Plateau Scientific Expedition and Research Program
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献