Abstract
Bus company operators are interested in obtaining knowledge about the number of passengers on their buses—preferably doing so at low deployment costs and in an automated manner, while keeping accuracy high. One solution, widely used in practice, involves deploying a light sensor-based system, counting the people entering and leaving the bus. The light sensor system is simple, but errors accumulate over time, because it is not capable of error correcting. For this reason, the light sensor-based system is compared to a WLAN probe-based system, which has entirely different characteristics. Inaccuracy with the WLAN estimator comes from a need to filter out mobile devices outside the bus and to map the number of detected devices to a number of people. The comparison is performed based on data collected from a real-life deployment in a medium sized German city. The comparison shows the trade-off in selecting either of the two methods. Furthermore, a novel approach for fusion of the light sensor and WLAN estimators is proposed which has a big potential in improving accuracy of both estimators. A fusion approach is proposed that utilizes the different error characteristics for error compensation by calculating compensation terms. The knowledge of Ground Truth is not required as part of this fusion approach for calibration; results show that the approach can find the optimal parameter settings and that it makes this occupancy estimation approach scalable and automated.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unified Occupancy on a Public Transport Network Through Combination of AFC and APC Data;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24
2. Context-Aware Automated Passenger Counting Data Denoising;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24