Plate Waves Scattering Analysis and Active Damage Detection

Author:

Yu Tai-HoORCID

Abstract

This study investigates and evaluates the technology of using plate waves to detect the locations and sizes of circular holes and cracks in plates. Piezoelectric ceramic discs surface-mounted on both sides of an aluminum alloy plate were used as narrow-frequency plate wave actuators and sensors, and the antisymmetric plate wave signal was analyzed by wavelet transform in the time-frequency domain. The damage location and frequency spectrum characteristics were identified by the wave through time-of-flight difference and signal analysis of the damage scattered wave group. The plate wave signal of the damaged plate included the scattered wave signal and the plate wave signal transmitted directly between the piezoelectric discs. Under ideal conditions, the plate wave signal indicating damage can be obtained by subtracting the plate wave signal in a plate without damage from the plate wave signal scattered from actuators to sensors. This study established an optimization program based on the simplex algorithm to inversely calculate the location of the plate damage. The developed damage location objective function has a unique global minimum value that can ensure the accuracy of the damage location calculation, and good results were obtained in experiments. The spectral characteristics of the scattered plate wave were related to the type, size, wave propagation path, and incident angle of the damage. Numerical analyses of scattered spectra for various damages are needed as references to compare with experimental results in the future.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3