Single-Step GBLUP and GWAS Analyses Suggests Implementation of Unweighted Two Trait Approach for Heat Stress in Swine

Author:

Dodd Gabriella Roby,Gray Kent,Huang Yijian,Fragomeni Breno

Abstract

The purpose of this study was to perform a genome-wide association study to determine the genomic regions associated with heat stress tolerance in swine. Phenotypic information on carcass weight was available for 227,043 individuals from commercial farms in North Carolina and Missouri, U.S. Individuals were from a commercial cross of a Duroc sire and a dam resulting from a Landrace and Large White cross. Genotypic information was available for 8232 animals with 33,581 SNPs. The pedigree file contained a total of 553,448 animals. A threshold of 78 on the Temperature Humidity Index (THI) was used to signify heat stress. A two-trait analysis was used with the phenotypes heat stress (Trait One) and non-heat stress (Trait Two). Variance components were calculated via AIREML and breeding values were calculated using single step GBLUP (ssGBLUP). The heritability for Traits One and Two were calculated at 0.25 and 0.20, respectively, and the genetic correlation was calculated as 0.63. Validation was calculated for 163 genotyped sires with progeny in the last generation. The benchmark was the GEBV with complete data, and the accuracy was determined as the correlation between the GEBV of the reduced and complete data for the validation sires. Weighted ssGBLUP did not increase the accuracies. Both methods showed a maximum accuracy of 0.32 for Trait One and 0.54 for Trait Two. Manhattan Plots for Trait One, Trait Two, and the difference between the two were created from the results of the two-trait analysis. Windows explaining more than 0.8% of the genetic variance were isolated. Chromosomes 1 and 14 showed peaks in the difference between the two traits. The genetic correlation suggests a different mechanism for Hot Carcass Weight under heat stress. The GWAS results show that both traits are highly polygenic, with only a few genomic regions explaining more than 1% of variance.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3