Abstract
The finite-difference method is widely used in seismic wave numerical simulation, imaging, and waveform inversion. In the finite-difference method, the finite difference operator is used to replace the differential operator approximately, which can be obtained by truncating the spatial convolution series. The properties of the truncated window function, such as the main and side lobes of the window function’s amplitude response, determine the accuracy of finite-difference, which subsequently affects the seismic imaging and inversion results significantly. Although numerical dispersion is inevitable in this process, it can be suppressed more effectively by using higher precision finite-difference operators. In this paper, we use the krill herd algorithm, in contrast with the standard PSO and CDPSO (a variant of PSO), to optimize the finite-difference operator. Numerical simulation results verify that the krill herd algorithm has good performance in improving the precision of the differential operator.
Funder
the Ministry of Science and Technology of China
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science