Low-Complexity 3D InISAR Imaging Using a Compressive Hardware Device and a Single Receiver

Author:

Lo Mor Diama,Davy Matthieu,Ferro-Famil Laurent

Abstract

An Interferometric Inverse SAR system is able to perform 3D imaging of non-cooperative targets by measuring their responses over time and through several receiving antennas. Phase differences between signals acquired with a spatial diversity in vertical or horizontal directions are used to localize moving scatterers in 3D. The use of several receiving channels generally results into a costly and complex hardware solution, and this paper proposes performing this multichannel acquisition using a single receiver and a hardware compressive device, based on a chaotic cavity which simultaneously multiplexes in the spectral domain signals acquired over different antennas. The radar responses of the scene are encoded in the spectral domain onto the single output of a leaky chaotic cavity, and can be retrieved by solving an inverse problem involving the random transfer matrix of the cavity. The applicability of this compressed sensing approach for the 3D imaging of a non-cooperative target using low-complexity hardware is demonstrated using both simulations and measurements. This study opens up new perspectives to reduce the hardware complexity of high-resolution ISAR systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3