Heuristic Method for Minimizing Model Size of CNN by Combining Multiple Pruning Techniques

Author:

Tian DanheORCID,Yamagiwa ShinichiORCID,Wada KoichiORCID

Abstract

Network pruning techniques have been widely used for compressing computational and memory intensive deep learning models through removing redundant components of the model. According to the pruning granularity, network pruning can be categorized into structured and unstructured methods. The structured pruning removes the large components in a model such as channels or layers, which might reduce the accuracy. The unstructured pruning directly removes mainly the parameters in a model as well as the redundant channels or layers, which might result in an inadequate pruning. To address the limitations of the pruning methods, this paper proposes a heuristic method for minimizing model size. This paper implements an algorithm to combine both the structured and the unstructured pruning methods while maintaining the target accuracy that is configured by its application. We use network slimming for the structured pruning method and deep compression for the unstructured one. Our method achieves a higher compression ratio than the case when the individual pruning method is applied. To show the effectiveness of our proposed method, this paper evaluates our proposed method with actual state-of-the-art CNN models of VGGNet, ResNet and DenseNet under the CIFAR-10 dataset. This paper discusses the performance of the proposed method with the cases of individual usage of the structured and unstructured pruning methods and then proves that our method achieves better performance with higher compression ratio. In the best case of the VGGNet, our method results in a 13× reduction ratio in the model size, and also gives a 15× reduction ratio regarding the pruning time compared with the brute-force search method.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3