Abstract
This paper explores the full control of a quadrotor Unmanned Aerial Vehicles (UAVs) byexploiting the nature-inspired algorithms of Particle Swarm Optimization (PSO), Cuckoo Search(CS), and the cooperative Particle Swarm Optimization-Cuckoo Search (PSO-CS). The proposedPSO-CS algorithm combines the ability of social thinking in PSO with the local search capability inCS, which helps to overcome the problem of low convergence speed of CS. First, the quadrotordynamic modeling is defined using Newton-Euler formalism. Second, PID (Proportional, Integral,and Derivative) controllers are optimized by using the intelligent proposed approaches and theclassical method of Reference Model (RM) for quadrotor full control. Finally, simulation resultsprove that PSO and PSO-CS are more efficient in tuning of optimal parameters for the quadrotorcontrol. Indeed, the ability of PSO and PSO-CS to track the imposed trajectories is well seen from3D path tracking simulations and even in presence of wind disturbances.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献