Fabrication and Characterization of Granulated β-Tricalcium Phosphate and Bioactive Glass Powders by Spray Drying

Author:

Nakanishi Akihiro12,Ningsih Henni Setia1ORCID,Putra Dwi Fortuna Anjusa1ORCID,Moriga Toshihiro2,Shih Shao-Ju1ORCID

Affiliation:

1. Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan

2. Department of Chemical Science and Technology, Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan

Abstract

Biocomposite materials are widely implemented in various applications in clinical dentistry and orthopedics since it is possible to combine multiple materials by relying on their compatibility. Ceramic-based materials have osteogenic and osteoconductive features owing to their inorganic constituents with dental and bone tissue. β-tricalcium phosphate (β-TCP) and bioactive glass have excellent biocompatibility, bioresorbability, and bioactivity. In this study, β-TCP and BG powders were fabricated by spray pyrolysis (SP) and spray drying (SD). These fabrication methods are suitable for the mass production and synthesis of spherical particles. At first, β-TCP and BG spherical particles were synthesized by SP and characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electronic microscopy (SEM). After that, these powders were granulated with the different weight ratios of β-TCP/BG = 100/0, 75/25, 50/50, 25/75, and 0/100 by SD. The resulting granulation powders were characterized using XRD, FT-IR, and SEM to investigate phase compositions and microstructures. In addition, cytotoxicity was investigated using the MTT assay.

Funder

Tokushima University and National Taiwan University of Science and Technology, Taiwan

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3