Antimicrobial Hydrophobic SiO2-TiO2-PDMS Films: Effect of Indirect Ultrasonic Irradiation on the Synthesis Process

Author:

Rosales Alicia12ORCID,Mandujano Hugo1,Cervantes-Chávez José Antonio3,Esquivel Karen1ORCID

Affiliation:

1. Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro 76010, Mexico

2. Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro 76010, Mexico

3. Natural Sciences Faculty, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Anillo Vial Fray Junípero Serra, Km 8, Santiago de Querétaro 76000, Mexico

Abstract

Film applications’ recent advances in the alimentary industry mainly focus on extending product shelf life. Researchers have investigated the use of nanomaterials as active packaging to shield food product contents from the outside elements and prevent bacterial development. In this context, the use of sonochemistry energy offers a friendly and efficient opportunity to obtain this kind of film. However, access to an ultrasonic homogenizer is limited because of the cost and accessories. In this work, a self-cleaning coating based on the SiO2-TiO2-PDMS composite was obtained by the sol–gel method coupled with indirect sonochemical energy. Two sonication reaction times were used to investigate its impact on the final composite’s chemical, morphological, and antibacterial properties. TEM and SEM techniques indicate an amorphous morphology and superficial cracks in SiO2-TiO2-PDMS films over aluminum foil. At the same time, AFM reveals a rise in rugosity with a value of Ra = 18.7 ± 2.47 nm, increasing the sonochemical reaction time. Non-significative changes by FTIR-ATR analysis were observed. The antibacterial evaluation was conducted, and the results indicate that both composites exhibited superior effectiveness. Specifically, the S40 film demonstrated a significant reduction in the growth of Gram-negative cells (E. coli, P. putida, and P. aeruginosa), with reductions ranging from 50% to 95%. In contrast, the reduction in Gram-positive cells (S. aureus) was less than 10%. These findings underscore the potential application of the SiO2-TiO2-PDMS film as active packaging.

Funder

Universidad Autónoma de Querétaro

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3