Adaptive Extended State Observer for the Dual Active Bridge Converters

Author:

Duong Tan-Quoc1,Trinh Hoai-An2ORCID,Ahn Kyoung-Kwan2ORCID,Choi Sung-Jin1ORCID

Affiliation:

1. Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea

2. Department of Mechanical Engineering, University of Ulsan, Ulsan 44610, Republic of Korea

Abstract

The DC–DC dual active bridge (DAB) converter has become one of the essential units for bidirectional energy distribution and connecting various renewable energy sources. When it comes to regulating the converter’s output voltage, integrating an extended state observer (ESO) offers the advantage of eliminating the need for a current sensor, thereby reducing system costs. The ESO with a high observer bandwidth tends to acquire a faster system convergence and greater tracking accuracy. However, its disturbance suppression performance will become poor compared to the ESO with a low observer bandwidth. Based on this, the adaptive ESO (AESO) is proposed in this study to make a compromise between tracking performance and disturbance suppression. When the system is subjected to a high voltage error, the observer bandwidth will increase to improve the tracking performance and decrease to enhance the disturbance suppression. In order to demonstrate that the proposed method is effective, it is compared to the ESO with a fixed observer bandwidth and the improved model-based phase-shift control (MPSC). These comparisons are made through simulation and experimental results in various operation scenarios.

Funder

Regional Innovation Strategy (RIS) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3