Coordination of Macro Base Stations for 5G Network with User Clustering

Author:

Li KunORCID,Ai Xiaomeng,Fang Jiakun,Zhou Bo,Le Lingling,Wen Jinyu

Abstract

With the increasing amounts of terminal equipment with higher requirements of communication quality in the emerging fifth generation mobile communication network (5G), the energy consumption of 5G base stations (BSs) is increasing significantly, which not only raises the operating expenses of telecom operators but also imposes a burden on the environment. To solve this problem, a two-step energy management method that coordinates 5G macro BSs for 5G networks with user clustering is proposed. The coordination among the communication equipment and the standard equipment in 5G macro BSs is developed to reduce both the energy consumption and the electricity costs. A novel user clustering method is proposed together with Benders decomposition to accelerate the solving process. Simulation results show that the proposed method is computationally efficient and can ensure near-optimal performance, effectively reducing the energy consumption and electricity costs compared with the conventional dispatching scheme.

Funder

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Energy-efficient 5G for a greener future;Chih-Lin;Nat. Electron.,2020

2. Research on energy saving technology of 5G base station;Ting;Radio Commun.,2020

3. Green 5G: Building a Sustainable Worldhttps://www.huawei.com/en/public-policy/green-5g-building-a-sustainable-world

4. Amping Up the PA for 5G: Efficient GaN Power Amplifiers with Dynamic Supplies

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3